

R-KEM II résine polyester (ester-méthacrylate) sans styrène pour béton

Résine polyester haute performance sans styrène recommandée pour le scellement de charges moyennes dans le béton non fissuré

Agréments

• ETA-21/0243

Déscription de produit

Caractéristiques et avan-

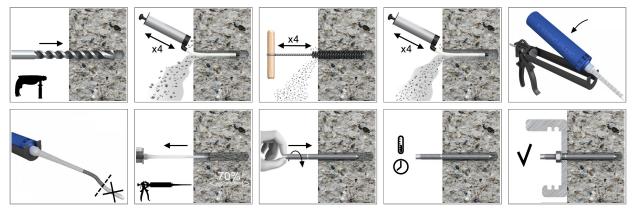
tages

- Approuvé pour une utilisation dans du béton non fissuré (EAD 330499-01-0601), durée de vie jusqu'à 100 ans
- [French]: Available in a winter version with faster curing time. It can be used from -20°C.
- [French]: Three colors standard, stone &
- · La résine la plus pratique pour usage général
- · Mise en oeuvre rapide, facile et sûre
- · Large gamme d'applications avec charges movennes
- · Idéale lorsque un ancrage par expansion n'est pas possible

Applications

- Consoles
- Cages d'escaliers
- Portails
- Rayonnage en hauteur
- Auvents
- Equipement sanitaire
- Charpente métallique
- Balustrade
- Mains courantes
- Support échelles
- · Chemins de câbles

Supports


A utiliser dans:

 Béton non-fissuré C20/25-C50/60

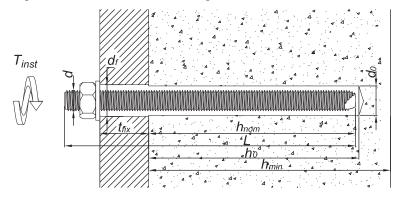
Convient également à l'utilisation dans:

· Pierre naturelle

Mise en œuvre

Déscription de produit

- 1. Percer un trou de diamètre et profondeur adéquats pour l'installation de la tige filetée ou douille employée.
- 2. Supports pleins: nettoyer le trou laide dun couvillon et de la pompe soufflante au moins quatre fois chaque. Cette tape est indispensable avant linstallation. Supports creux: utilisation avec tamis dinjection.
- 3. Insérer la cartouche dans le pistolet extrudeur et attacher l'embout mélangeur.
- 4. Extruder la résine jusqu'à l'obtention d'une couleur uniforme.
- 5. Faire entrer l'embout jusqu'à l'extrémité du trou et extruder la résine. Remplir le trou jusqu'à 2/3 tout en retirant lentement la buse.
- 6. Immédiatement après l'application de la résine, lentement enfoncer la tige filetée dans le trou avec un mouvement de rotation. Enlever la résine qui déborde le trou. Ne plus manipuler avant le durcissement complet.
- 7. Positionner la pièce à fixer et serrer l'écrou au couple recommandé.


		/	Volume
Code produit	Rsine	Description / Type de rsine	[ml]
R-KEM-II-175			175
R-KEM-II-300	R-KEMII	Rsine Polyester Sans Styrne	300
R-KEM-II-410			410
R-KEM-II-300-W	R-KEMII-W	Temperatures basses (hiver)/Rsine sans styrne temps de prise court	300
R-KEM-II-300-S	R-KEMII-S	Temperatures leves (t) / Rsine sans styr- ne long temps de prise	300
R-KEM-II-175-SET		Set de 4 clous et manchons en plastique	175
R-KEM-II-300-SET			300
R-KEM-II-300-STONE		Tan Diagram Davis a Dalumahan Cara Church	300
R-KEM-II-410-STONE	R-KEMII	Ton Pierre Resine Polyester Sans Styrne	410
R-KEM-II-300-GREY		Top Cris Decine Delugates Sans Styres	300
R-KEM-II-410-GREY		Ton Gris Resine Polyester Sans Styrne	410
R-KEM-II-300-SV		Rsine Polyester Sans Styrne	300

R-STUDS

		Code produit		Fixa	ation	Pièce à fixer
Dimen-				Diamtre	Longueur	Diamtre de trou
sion	Acier classe 5.8	Acier classe 8.8	Acier type A4	d	L	d _f
				[mm]	[mm]	[mm]
140	R-STUDS-08110	R-STUDS-08110-88	R-STUDS-08110-A4	8	110	9
M8	R-STUDS-08160	-	R-STUDS-08160-A4	8	160	9
	R-STUDS-10130	R-STUDS-10130-88	R-STUDS-10130-A4	10	130	12
M10	R-STUDS-10170	-	-	10	170	12
	R-STUDS-10190	-	-	10	190	12
	R-STUDS-12160	R-STUDS-12160-88	R-STUDS-12160-A4	12	160	14
	R-STUDS-12190	-	R-STUDS-12190-A4	12	190	14
M12	R-STUDS-12220	-	-	12	220	14
	R-STUDS-12260	-	-	12	260	14
	R-STUDS-12300	-	R-STUDS-12300-A4	12	300	14
	R-STUDS-16190	R-STUDS-16190-88	R-STUDS-16190-A4	16	190	18
	R-STUDS-16220	-	-	16	220	18
M16	R-STUDS-16260	-	-	16	260	18
	R-STUDS-16300	-	-	16	300	18
	R-STUDS-16380	-	-	16	380	18
	R-STUDS-20260	R-STUDS-20260-88	R-STUDS-20260-A4	20	260	22
M20	R-STUDS-20300	-	-	20	300	22
	R-STUDS-20350	-	-	20	350	22
M24	R-STUDS-24300	R-STUDS-24300-88	R-STUDS-24300-A4	24	300	26
M30	R-STUDS-30380	R-STUDS-30380-88	-	30	380	32

Spécifications techniques

R-STUDS

Dimension			M8	M10	M12	M16	M20	M24	M30
Diamtre de filetage	d	[mm]	8	10	12	16	20	24	30
Diamètre du trou foré	d _o	[mm]	10	12	14	18	24	28	35
Diamètre de trou dans la pièce à fixer	d _f	[mm]	9	12	14	18	22	26	33
Profondeur de perçage mini	h _o	[mm]	h _{nom} + 5	h _{nom} + 5	h _{nom} + 5	h _{nom} + 5			
Min. épaisseur de support	h _{min}	[mm]	h _{nom} + 30 ≥ 100	h _{nom} + 30 ≥ 100	h _{nom} + 30 ≥ 100	h _{nom} + 2d ₀			
Couple de serrage	T _{inst}	[Nm]	10	20	40	80	120	180	300
Distance entre axes mini	S _{min}	[mm]	40	40	40	50	60	70	85
Distance au bord mini	C _{min}	[mm]	40	40	40	50	60	70	85
PROFONDEUR D'ANCRAGE MINIMALE									
Profondeur hors-tout d'ancrage	h _{nom,min}	[mm]	60	70	80	100	120	140	165
PROFONDEUR D'ANCRAGE MAXIMALE									
Profondeur hors-tout d'ancrage	h _{nom, max}	[mm]	160	200	240	320	400	480	600

Min. temps de manipulation et temps de prise

R-KEM II

Temprature de rsine	Temprature de bton	Temps de prise*	Temps de manipula- tion
[°C]	[°C]	[min]	[min]
5	-20	-	-
5	-15	-	-
5	-10	-	-
5	-5	8 h	70
5	0	4 h	45
5	5	2 h	25
10	10	1.5 h	15
15	15	1 h	9
20	20	45	5
25	30	30	2
25	35	-	-
25	40	-	-

^{*} Pour le béton humide, le temps de prise doit être doublé

Spécifications techniques

R-KEMII-W

Temprature de rsine	Temprature de bton	Temps de prise*	Temps de manipula- tion
[°C]	[°C]	[min]	[min]
5	-20	24 h	45
5	-15	18 h	30
5	-10	8 h	20
5	-5	5 h	11
5	0	2 h	7
5	5	1 h	5
10	10	45	2
15	15	30	1.5
20	20	15	1
25	30	-	-
25	35	-	-
25	40	-	-

^{*} Pour le béton humide, le temps de prise doit être doublé

R-KEMII-S

Temprature de rsine	Temprature de bton	Temps de prise*	Temps de manipula- tion
[°C]	[°C]	[min]	[min]
5	-20	-	-
5	-15	-	-
5	-10	-	-
5	-5	24 h	180
5	0	18 h	120
5	5	12 h	60
10	10	8 h	45
15	15	6 h	25
20	20	4 h	15
25	30	1.5 h	7
25	35	1 h	6
25	40	45	5

^{*} Pour le béton humide, le temps de prise doit être doublé

Propriétés mécaniques

Dimension			M8	M10	M12	M16	M20	M24	M30
R-STUDS tiges filetes m	triques, acie	r classe 5.8							
Max. résistance de calcul à la traction – traction	F _{uk}	[N/mm²]	500	500	500	500	500	500	500
Limite de calcul d'élasticité – traction	F _{yk}	[N/mm²]	400	400	400	400	400	400	400
Coupe transversale - traction	A _s	[mm²]	37	58	84	157	245	353	560
Module de flexion élastique	W _{el}	[mm³]	31	62	109	278	541	935	1868
Résistance caractéristique à la flexion	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	561	1124
Résistance de calcul à la fle- xion	М	[Nm]	15	30	52	133	259	449	899
Résistance admissible à la fle- xion	M _{rec}	[Nm]	11	21	37	95	185	321	642

Propriétés mécaniques

Dimension			М8	M10	M12	M16	M20	M24	M30
R-STUDS tiges filetées n	nétriques, a	cier classe 8.8							
Max. résistance de calcul à la traction – traction	f _{uk}	[N/mm²]	800	800	800	800	800	800	800
Limite de calcul d'élasticité – traction	f_{yk}	[N/mm²]	640	640	640	640	640	640	640
Coupe transversale – traction	A_s	[mm²]	37	58	84	157	245	353	560
Module de flexion élastique	W _{el}	[mm³]	31	62	109	278	541	935	1868
Résistance caractéristique à la flexion	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898	1799
Résistance de calcul à la fle- xion	М	[Nm]	24	48	84	213	416	718	1439
Résistance admissible à la fle- xion	M _{rec}	[Nm]	17	34	60	152	297	513	1028
R-STUDS tiges filetées n	nétriques - a	acier inox class	e A4						
Max. résistance de calcul à la traction – traction	F _{uk}	[N/mm²]	700	700	700	700	700	700	700
Limite de calcul d'élasticité – traction	F _{yk}	[N/mm²]	450	450	450	450	450	450	450
Coupe transversale – traction	A_s	[mm²]	37	58	84	157	245	353	560
Module de flexion élastique	W_{el}	[mm³]	31	62	109	278	541	935	1868
Résistance caractéristique à la flexion	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	786	1574
Résistance de calcul à la fle- xion	М	[Nm]	17	34	59	149	291	504	1009
Résistance admissible à la fle- xion	M _{rec}	[Nm]	12	24	42	107	208	360	721

Données sur la performance de base

R-STUDS

Données pour une seule cheville sans l'impact des bords et chevilles voisins

Dimension		M8	M10	M12	M16	M20	M24	M30		
Support					233233.0					
			CHARGES DE R	UPTURE						
		СН	ARGE DE TRAC	TION N _{Ru.m}						
R-STUDS TIGES FILETES MTRIQU	JES, ACIER CL	ASSE 5.8								
Profondeur d'ancrage minimale	[kN]	18.9	26.4	40.7	63.4	88.7	111.8	143.1		
Profondeur d'ancrage maximale	[kN]	18.9	30.5	44.1	81.9	128.1	184.8	294.0		
R-STUDS TIGES FILETÉES MÉTRIQUES, ACIER CLASSE 8.8										
Profondeur d'ancrage minimale	[kN]	21.1	26.4	40.7	65.4	88.7	111.8	143.1		
Profondeur d'ancrage maximale	[kN]	30.5	48.3	70.4	132.3	205.8	296.1	471.5		
R-STUDS TIGES FILETÉES MÉTRI	QUES - ACIER	INOX CLASSE	A4							
Profondeur d'ancrage minimale	[kN]	21.1	26.4	40.7	65.4	88.7	111.8	143.1		
Profondeur d'ancrage maximale	[kN]	27.3	43.1	62.0	115.5	179.6	259.4	412.7		
		CHAF	RGE DE CISAILLI	EMENT V _{Ru,m}						
R-STUDS TIGES FILETES MTRIQU	JES, ACIER CL	ASSE 5.8								
Profondeur d'ancrage minimale	[kN]	11.3	18.3	26.5	49.1	76.9	110.9	176.4		
Profondeur d'ancrage maximale	[kN]	11.3	18.3	26.5	49.1	76.9	110.9	176.4		
R-STUDS TIGES FILETÉES MÉTRI	QUES, ACIER	CLASSE 8.8								
Profondeur d'ancrage minimale	[kN]	18.3	29.0	42.2	79.4	123.5	177.7	279.9		
Profondeur d'ancrage maximale	[kN]	18.3	29.0	42.2	79.4	123.5	177.7	282.9		
R-STUDS TIGES FILETÉES MÉTRI	QUES - ACIER	INOX CLASSE	A4							
Profondeur d'ancrage minimale	[kN]	16.4	25.8	37.2	69.3	107.7	155.6	247.6		
Profondeur d'ancrage maximale	[kN]	16.4	25.8	37.2	69.3	107.7	155.6	247.6		

Données sur la performance de base

Dimension		M8	M10	M12	M16	M20	M24	M30
		RÉSIS	STANCE CARAC	TÉRISTIQUE				
		CH	HARGE DE TRAC	CTION N _{Rk}				
R-STUDS TIGES FILETES MTRIQU	IES, ACIER CL	ASSE 5.8						
Profondeur d'ancrage minimale	[kN]	14.3	20.9	27.1	40.2	60.3	68.6	85.5
Profondeur d'ancrage maximale	[kN]	18.0	29.0	42.0	78.0	122.0	176.0	280.0
R-STUDS TIGES FILETÉES MÉTRIC	QUES, ACIER	CLASSE 8.8						
Profondeur d'ancrage minimale	[kN]	14.3	20.9	27.1	40.2	60.3	68.6	85.5
Profondeur d'ancrage maximale	[kN]	29.0	46.0	67.0	126.0	196.0	235.2	311.0
R-STUDS TIGES FILETÉES MÉTRIC	QUES - ACIER	INOX CLASSE	A4					
Profondeur d'ancrage minimale	[kN]	14.3	20.9	27.1	40.2	60.3	68.6	85.5
Profondeur d'ancrage maximale	[kN]	26.0	41.0	59.0	110.0	171.0	235.2	311.0
		CHA	RGE DE CISAILI	EMENT V _{Rk}				
R-STUDS TIGES FILETES MTRIQU	IES, ACIER CL	ASSE 5.8						
Profondeur d'ancrage minimale	[kN]	9.00	14.0	21.0	39.0	61.0	88.0	140.0
Profondeur d'ancrage maximale	[kN]	9.00	14.0	21.0	39.0	61.0	88.0	140.0
R-STUDS TIGES FILETÉES MÉTRI	QUES, ACIER	CLASSE 8.8						
Profondeur d'ancrage minimale	[kN]	15.0	23.0	34.0	63.0	98.0	137.2	171.1
Profondeur d'ancrage maximale	[kN]	15.0	23.0	34.0	63.0	98.0	141.0	224.0
R-STUDS TIGES FILETÉES MÉTRIC	QUES - ACIER	INOX CLASSE	A4					
Profondeur d'ancrage minimale	[kN]	13.0	20.0	29.0	55.0	86.0	124.0	171.1
Profondeur d'ancrage maximale	[kN]	13.0	20.0	29.0	55.0	86.0	124.0	196.0
			VALEUR DE C	ALCUL				
		CL	ARGE DE TRAC	TION N				
D CTUDE TIEFE FUETER MIDIOU	IFC ACIED CI		IARGE DE TRAC	ZHON N _{Rd}				
R-STUDS TIGES FILETES MTRIQU			11.6	151	22.2	22.5	20.4	47.5
Profondeur d'ancrage minimale	[kN]	6.82	11.6	15.1	22.3	33.5	38.1	47.5
Profondeur d'ancrage maximale R-STUDS TIGES FILETÉES MÉTRI	[kN]	12.0	19.3	28.0	52.0	81.3	117.3	172.8
Profondeur d'ancrage minimale		6.82	11.6	15.1	22.3	33.5	38.1	47.5
Profondeur d'ancrage maximale	[kN]	18.2	30.7	44.7	71.5	111.7	130.7	172.8
R-STUDS TIGES FILETÉES MÉTRI	[kN]			44.7	/ 1.5	111.7	130.7	172.8
Profondeur d'ancrage minimale	[kN]	6.82	11.6	15.1	22.3	33.5	38.1	47.5
Profondeur d'ancrage maximale	[kN]	13.9	21.9	31.6	58.8	91.4	130.7	172.8
Profondedi d'aliciage maximate	[KIN]				36.6	31.4	130.7	172.0
		СНА	RGE DE CISAILI	LEMENI V _{Rd}				
R-STUDS TIGES FILETES MTRIQU								
Profondeur d'ancrage minimale	[kN]	7.20	11.2	16.8	31.2	48.8	70.4	112.0
Profondeur d'ancrage maximale	[kN]	7.20	11.2	16.8	31.2	48.8	70.4	112.0
R-STUDS TIGES FILETÉES MÉTRIC	,							
Profondeur d'ancrage minimale	[kN]	12.0	18.4	27.2	50.4	78.4	91.5	114.0
Profondeur d'ancrage maximale	[kN]	12.0	18.4	27.2	50.4	78.4	112.8	179.2
R-STUDS TIGES FILETÉES MÉTRIC								
Profondeur d'ancrage minimale	[kN]	8.33	12.8	18.6	35.3	55.1	79.5	114.0
Profondeur d'ancrage maximale	[kN]	8.33	12.8	18.6	35.3	55.1	79.5	125.6

Données sur la performance de base

Dimension		M8	M10	M12	M16	M20	M24	M30			
		V	ALEUR RECOM	MANDÉE							
		CI	HARGE DE TRAC	CTION N _{rec}							
R-STUDS TIGES FILETES MTRIQU	ES, ACIER CL	ASSE 5.8									
Profondeur d'ancrage minimale	[kN]	4.87	8.29	10.8	16.0	23.9	27.2	33.9			
Profondeur d'ancrage maximale	[kN]	5.87	13.8	20.0	37.1	58.1	83.8	123.4			
R-STUDS TIGES FILETÉES MÉTRIQUES, ACIER CLASSE 8.8											
Profondeur d'ancrage minimale	[kN]	4.87	8.29	10.8	16.0	23.9	27.2	33.9			
Profondeur d'ancrage maximale	[kN]	13.0	21.9	31.9	51.1	79.8	93.4	123.4			
R-STUDS TIGES FILETÉES MÉTRIC	QUES - ACIER	INOX CLASSE	A4								
Profondeur d'ancrage minimale	[kN]	4.87	8.29	10.8	16.0	23.9	27.2	33.9			
Profondeur d'ancrage maximale	[kN]	9.93	15.7	22.5	42.0	65.3	93.4	123.4			
		CHA	RGE DE CISAILI	EMENT V _{rec}							
R-STUDS TIGES FILETES MTRIQU	ES, ACIER CL	ASSE 5.8									
Profondeur d'ancrage minimale	[kN]	5.14	8.00	12.0	22.3	34.9	50.3	80.0			
Profondeur d'ancrage maximale	[kN]	5.14	8.00	12.0	22.3	34.9	50.3	80.0			
R-STUDS TIGES FILETÉES MÉTRIC	QUES, ACIER	CLASSE 8.8									
Profondeur d'ancrage minimale	[kN]	8.57	13.1	19.4	36.0	56.0	65.4	81.5			
Profondeur d'ancrage maximale	[kN]	8.57	13.1	19.4	36.0	56.0	80.6	128.0			
R-STUDS TIGES FILETÉES MÉTRIC	QUES - ACIER	INOX CLASSE	A4								
Profondeur d'ancrage minimale	[kN]	5.95	9.16	13.3	25.2	39.4	56.8	81.5			
Profondeur d'ancrage maximale	[kN]	5.95	9.16	13.3	25.2	39.4	56.8	89.7			

Données sur la performance nominale

R-STUDS

Dimension			M8	M10	M12	M16	M20	M24	М30
			CHAR	GE DE TRACTI	ON				
RUPTURE D'ACIER; ACIER CLAS	SE 5.8								
Résistance caractéristique	N _{Rk,s}	[kN]	18.00	29.00	42.00	78.00	122.00	176.00	280.00
Coefficient partiel de sécurité	Y _{Ms}	-	1.50	1.50	1.50	1.50	1.50	1.50	1.50
RUPTURE D'ACIER; ACIER CLAS	SE 8.8								
Résistance caractéristique	N _{Rk,s}	[kN]	29.00	46.00	67.00	126.00	196.00	282.00	448.00
Coefficient partiel de sécurité	Y _{Ms}	-	1.50	1.50	1.50	1.50	1.50	1.50	1.50
RUPTURE D'ACIER; ACIER TYPE	A4-70								
Résistance caractéristique	N _{Rk,s}	[kN]	26.00	41.00	59.00	110.00	171.00	247.00	392.00
Coefficient partiel de sécurité	Υ _{Ms}	-	1.87	1.87	1.87	1.87	1.87	1.87	1.87
RUPTURE COMBINÉE PAR CÔN	E BÉTON	ET EXTRACT	TION-GLISSEN	MENT; [FRENCH	i]: NON-CRAC	KED CONCRET	E, C20/25 (40°	C/24°C)	
Résistance de liaison caractéristique	T_{Rk}	[N/mm²]	9.50	9.50	9.00	8.00	8.00	6.50	5.50
[French]: Sustained load factor	Ψ ⁰ sus	-	0.81	0.81	0.81	0.81	0.81	0.81	0.81
RUPTURE COMBINÉE PAR CÔN	E BÉTON	ET EXTRACT	TION-GLISSEN	MENT; [FRENCH	i]: NON-CRAC	KED CONCRET	E, C20/25 (80°	C/50°C)	
Résistance de liaison caractéristique	T _{Rk}	[N/mm²]	8.00	8.00	7.50	7.00	6.50	5.00	4.50
[French]: Sustained load factor	Ψ ⁰ sus	-	0.76	0.76	0.76	0.76	0.76	0.76	0.76
RUPTURE COMBINÉE PAR CÔN	E BÉTON	NET EXTRACT	TION-GLISSEN	MENT					
Coefficient de sécurité de pose	Y _{inst}	-	1.40	1.20	1.20	1.20	1.20	1.20	1.20
Facteurs d'accroissement pour N _{Rd,p} - C30/37	Ψ _c	-	1.04	1.04	1.04	1.04	1.00	1.00	1.00
Facteurs daccroissement pour N _{Rd,p} - C40/50	Ψ _c	-	1.07	1.07	1.07	1.07	1.00	1.00	1.00
Facteurs d'accroissement pour N _{Rd,p} - C50/60	Ψ _c	-	1.09	1.09	1.09	1.09	1.00	1.00	1.00
RUPTURE CÔNE BÉTON									
Coefficient de sécurité de pose	γ_{inst}	-	1.40	1.20	1.20	1.20	1.20	1.20	1.20
Facteur pour béton non fissuré	k _{ucr,N}	-	11.00	11.00	11.00	11.00	11.00	11.00	11.00
Distance au bord	C _{cr,N}	[mm]	1,5*h _{ef}	1,5*h _{el}					
Entraxes	S _{cr,N}	[mm]	3,0*h _{ef}						
[FRENCH]: CONCRETE SPLITTI	NG FAILU	IRE							
Coefficient de sécurité de pose	γ_{inst}	-	1.40	1.20	1.20	1.20	1.20	1.20	1.20

Données sur la performance nominale

Dimension			M8	M10	M12	M16	M20	M24	M30
			CHARGI	DE CISAILLE	MENT				
RUPTURE D'ACIER; ACIER CLAS	SE 5.8								
Résistance caractéristique sans bras de levier	V _{Rk,s}	[kN]	9.00	14.00	21.00	39.00	61.00	88.00	140.00
Facteur de ductilité	k,	-	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Résistance caractéristique avec bras de levier	$M_{Rk,s}$	[Nm]	19.00	37.00	65.00	166.00	324.00	561.00	1124.00
Coefficient partiel de sécurité	Υ _{Ms}	-	1.25	1.25	1.25	1.25	1.25	1.25	1.25
RUPTURE D'ACIER; ACIER CLAS	SE 8.8								
Résistance caractéristique sans bras de levier	$V_{\rm Rk,s}$	[kN]	15.00	23.00	34.00	63.00	98.00	141.00	224.00
Facteur de ductilité	k,	-	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Résistance caractéristique avec bras de levier	M _{Rk,s}	[Nm]	30.00	60.00	105.00	266.00	519.00	898.00	1799.00
Coefficient partiel de sécurité	Y _{Ms}	-	1.25	1.25	1.25	1.25	1.25	1.25	1.25
RUPTURE D'ACIER; ACIER TYPE	A4-70								
Résistance caractéristique sans bras de levier	$V_{\rm Rk,s}$	[kN]	13.00	20.00	29.00	55.00	86.00	124.00	196.00
Facteur de ductilité	k,	-	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Résistance caractéristique avec bras de levier	M _{Rk,s}	[Nm]	26.00	52.00	92.00	233.00	454.00	786.00	1574.00
Coefficient partiel de sécurité	Y _{Ms}	-	1.56	1.56	1.56	1.56	1.56	1.56	1.56
RUPTURE DU BÉTON PAR EFFE	T DE LEV	IER .							
Coefficient	k	-	2.00	2.00	2.00	2.00	2.00	2.00	2.00
Coefficient de sécurité de pose	Y _{inst}	-	1.00	1.00	1.00	1.00	1.00	1.00	1.00
RUPTURE DU BÉTON EN BORD	DE DALL	.E							
Diamètre de la cheville	d _{nom}	[mm]	8.00	10.00	12.00	16.00	20.00	24.00	30.00
Longueur effective de la cheville	l _f	[mm]	min(300; h _{ef} ;12d _{nom})						
Coefficient de sécurité de pose	Yinst	-	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Rupture combinée par traction et par cône de béton (EN 1992-4:2018, p.7.2.1.6., 7.14 - $N_{Rk,p}^0 = \psi_{sus}^0 * \tau_{Rk} * \pi * d * h_{ef}$). $h_{ef} = h_{nom}$

Données logistiques

Code produit	Volume [ml]		Quantité [pcs]			C. d. b		
		Boîte	Suremballage	Palette	Boîte	Suremballage	Palette	Code barres
R-KEM-II-175	175	10	10	840	3.8	3.8	348.1	5906675050249
R-KEM-II-300	300	10	10	840	5.9	5.9	529.0	5906675050256
R-KEM-II-410	410	10	10	560	8.4	8.4	498.7	5906675408163
R-KEM-II-300-W	300	10	10	840	5.9	5.9	527.2	5906675064666
R-KEM-II-300-S	300	10	50	600	6.0	30.0	390.0	5906675064642
R-KEM-II-175-SET	175	5	5	525	3.0	3.0	348.3	5906675057866
R-KEM-II-300-SET	300	5	5	320	4.9	4.9	345.9	5906675057859
R-KEM-II-300-STO NE	300	10	10	840	6.0	6.0	534.0	5906675038124
R-KEM-II-410-STO NE	410	10	10	560	8.4	8.4	498.7	5906675424958
R-KEM-II-300-GREY	300	10	10	840	6.0	6.0	534.0	5906675038131
R-KEM-II-410-GREY	410	10	10	560	8.4	8.4	498.7	5906675424941
R-KEM-II-300-SV	300	10	10	840	5.9	5.9	529.0	5906675417073

¹⁾ ETA-21/0243